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Supplementary Figure S1 Velocity of flow inside the ridged microchannel. Arrows indicate the 

direction of flow field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A mathematical model for predicting the height of hydrodynamically focused streams in a 

rectangular microchannel  

 

The three dimensional hydrodynamic focusing was implemented in a similar manner previously 

described
1
. The model for predicting the height of 2 D hydrodynamically focused streams in a 

rectangular microchannel is given in Supplementary Fig. S2a and derived as described previously
2
. 

Following assumptions are made: (i) Flow in the microchannels is steady and laminar. (ii) Fluids are 

Newtonian. (iii) Fluid has the same density in the inlet, sheath and outlet channel. 

 
Supplementary Figure S2 Mathematical model for determining the height of focused streamline: 

a) Schematic of the model for determining the height of the focused streamline in a rectangular 

microchannel. b) Calculated and simulated (COMSOL) Hf with cropped images of simulated 

streamlines on right for multiple cases of f. 

 

According to the principle of mass conservation, the amount of fluid passing through the inlet channel 

must equal to the amount of fluid passing through the dimension of the focused stream, i.e. 
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H is the height and W is the width of the channel,    is hydrodynamically focused stream and   and    

are volumetric flow rates of the sample and sheath channel inlets. The total amount of fluid passing 

through the outlet channel must equal the total amount of fluid supplied from the inlet and sheath,  
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Therefore, the relationship between the height of the hydrodynamically focused stream and the 

volumetric flow rates of the inlet channel and the sheath can be expressed as 
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where the velocity ratio γ =    /     is to be found.     and     are the average flow velocities in the 

focused stream and the outlet channel, respectively. The Reynolds number is generally very small in 

microfluidic devices. Since viscous effects dominate in low Reynolds number flows, the entrance length 

in the microchannel is very short. Therefore, the flow in the outlet channel can be assumed to be fully 

developed. Hence, the basic equation of the flow is given by 

                

                                                           
   

   
  

   

   
  

 

 
 
  

  
                                                                           

 

 

where u(y, z), dp/dx and μ are the streamwise velocity, pressure gradient and fluid viscosity in the outlet 

channel respectively. Imposing the no-slip condition on the channel wall, equation (4) can be solved as 
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Equation (5) is the well-known Poiseuille velocity profile for flow through a rectangular channel. 

Integrating equation (5) along the y-direction, the streamwise average velocity ¯u(z)in the rectangular 

microchannel can be expressed as 

 

 

     
 

 
∫          

 
 

 
 
 

   

   
(
   

  
) ∑

 

       

 

   

 {  
    [

        
 

]

    [
        

  ]
}                      

 

The average velocities in the outlet channel,    , and the focused stream,    , can be obtained from 

equation (6). The velocity ratio, γ, is then given by 
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Equation (7) reveals that γ is dependent on the aspect ratio. When aspect ratio ε =  W→ 0, a parabolic 

velocity profile is formed across the channel height and is independent of the position across the channel 

width (i.e. the velocity profile is ‘plug-like’ across the channel width). Under such conditions, γ = 1.0
3
 . 

Table in Supplementary Fig.S2b shows the comparison between the theoretical and numerical 

(COMSOL) models for the height of hydrodynamically focused stream.



From these simulations we found a range of flow rate ratios that positioned particles in a consistent z 

position range for improved consistency of transverse flow fields and thus improved size sorting. 

 

 

 

 

Supplementary Figure S3 Oscillation of small particles in wide channels. 

 

 

Supplementary Figure S4 No RBCs lysing as cells collected at outlet are intact. For negative control 

image of cells at inlet is also shown. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S1: Particle sorting comparison 

  

Reference Mechanism Throughput 

100*particles/min 

Enrichment 

(Large) 

Enrichment 

(Small) 

Resolution 

=Difference 

between particle 

size (µm) 
4

 

Inertial separation 1090 6.38 >10000 5 

5
 

Hydrodynamic 

filtration with no 

inertia 

548 39 >10000 6.9 

5
 

Hydrodynamic 

filtration with no 

inertia 

548 15.6 >10000 5.1 

6
 

Inertia and 

Secondary flow 
186 17.9 41 4.4 

7
 

Hydrophoretic 2.6 10000 >10000 3 

8
 

Hydrodynamic 

Filtration 
200 46.6 124 7.3 

OUR 

WORK 
Vertical sheath, 

hydrodynamics 
28000 13 >10000 5 



Supplementary Table S2: WBCs sorting comparison 

  

Reference Mechanism Throughput 

10^8 *cells /min 

Recovery Enrichment 

 
4

 

Hydrodynamic filtration with no 

inertia 

0.1 80 3329.33 

9
 

Deterministic Margination with 

no inertia 

7.5 80 50 

7
 

Hydrophoretic 0.00024 85 210 

10
 

Filter with back flush 1.87 72 148 

11
 

Magnetic 0.000415 97.4  

12
 

DEP 0.0085 92.1 7 

13
 

Cross flow filtration 0.835 27.4  

6
 

Inertial separation 0.019 89.7  

14
 

Inertial separation 0.5 98.4 20 

15
 

DLD 0.415 99  

16
 

Hydrodynamic filtration 0.1  29 

17
 

Margination based separation 0.015 94 46 

OUR 

WORK 

Vertical sheath, hydrodynamics 0.1 73 87 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S3: Estimated 𝑯  for different studies 

  

Study Sample Flow 

rate (ml/min) 

Vertical Sheath 

Flow rate (ml/min) 

Horizontal 

Sheath Flow 

rate (ml/min) 

Qi/Qs    (Calculated 

from equation 

(7))µm 

Width 

Optimization 

0.02 0.04 0.05 2/4 6.5 

Angle 

Optimization 

0.05 0.07 0.05 5/7 3.54 

Flow rate  

Study 

0.02 0.04 0.05 2 /4 6.5 

 0.05 0.07 0.05 5/7 8.125 

 0.05 0.055 0.05 5/5.5 9.285 

 0.05 0.09 0.05 5/9 6.9 

Vertical 

sheath study 

0.02 0.04 0.05 2/4 6.5 

Resolution 

Study 

0.05 0.09 0.05 5/9 7.7 
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